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Abstract

In this paper, analytical properties of 
Bayesian experimental design models 
based on an orthonormal system will be 
presented. The main idea of this paper is 
combining the models good for assuming 
a prior probability distribution over 
parameters with those good for deriving 
analytical properties. Firstly, it is shown 
that models expressed through the 
effect of each factor can be converted to 
those based on an orthonormal system. 
Next, it is shown that the posterior 
distribution and predictive distribution 
can be analytically derived in a Bayesian 
experimental framework. The result of 
this paper can be expected to be applied 
widely, especially in health care, where a 
Bayesian framework is necessary because 
the experiments are expensive.
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1 Introduction

Bayesian theory and methodology 
have seen dramatic growth in the last 
several decades. Lindley [1] reviewed 
experimental designs based on Bayesian 
decision theory. For sequential and non-
sequential Bayesian methods based on 
a framework for optimal experimental 
des igns ,  refer to [2 ,  3 ] .  Bishop [4 ] 
introduced some analytical properties 
of Bayesian methods through models 
made from linear combinations of basis 
functions.
  In experimental designs, since the 
traditional models are often expressed 
through the effect of each factor [5], 
these are adequate for assuming a 
prior probability distribution over the 
model parameters .  However, these 
are not linear combinations of basis 
functions and are not good for deriving 
analytical properties within the Bayesian 
framework. In addition, not all parameters 
are independent, because there are 
constraints on the parameters.
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  Concerning the model, it was also shown 
that the model can be expressed in terms 
of orthonormal basis functions by using 
complex Fourier coefficients, making all 
parameters independent [6, 7, 8, 9].
  In this paper, I will describe analytical 
properties of Bayesian experimental 
design models based on an orthonormal 
system. The main idea of this paper is 
combining the models good for assuming 
a prior probability distribution over 
parameters with those good for deriving 
analytical properties. Firstly it is shown 
that models expressed through the 
effect of each factor can be converted to 
those based on an orthonormal system. 
Using the results of [4], it is shown that 
the posterior distribution and predictive 
distribution can also be analytically 
derived within a Bayesian experimental 
framework. The result of this paper 
can be expected to be applied widely, 
especially in health care [10], where a 
Bayesian framework is necessary because 
the experiments are expensive.
  This paper is organized as follows. In 
Section 2, I give the form of the single 
and multivariate Gaussian distribution 
necessary for this study as preliminaries. 
In Section 3, after providing notations for 
experimental designs, it is shown that 
models expressed through the effect of 
each factor can be converted to those 
based on an orthonormal system. In 
Section 4, it is shown that the posterior 

distribution and predictive distribution 
can also be analytically derived in a 
Bayesian experimental framework. 
Section 5 concludes this paper.

2 Preliminaries
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In the case of a single variable
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2 Preliminaries

2.1 Gaussian Distribution

In the case of a single variable x, the Gaussian

distribution take the form

N (x|µ, σ2)

=
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}
, (1)

where µ is the mean and σ2 is the variance.

2.2 Multivariate Gaussian Distribution

In the case of an N -dimensional vector x, the

multivariate Gaussian distribution takes the

form

N (x|µ,Σ)

=
1

(2π)N/2

1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

(2)

where µ is an N -dimensional mean vector, Σ

is an N×N covariance matrix, |Σ| denotes the
determinant of Σ, and Σ−1 is the inverse of Σ.

3 Experimental Design

In this section, after providing notations for ex-

perimental designs, I introduce two experimen-

tal design models.

Firstly, I explain the traditional model, which

is expressed through the effect of each fac-

tor. This model clarifies how each factor af-

fects the response variable [5]. Because I con-

sider a Bayesian approach in this paper, I need

to introduce a prior probability distribution

over the model parameters. For the traditional

model, it is easy to assume a prior probability

distribution. However, this model is not good

for deriving analytical properties of a Bayesian

framework, because it is not linear combina-

tions of basis functions. In addition, not all

parameters are independent, because there are

constraints on the parameters.

In contrast, models based on an orthonormal

system are good for deriving analytical prop-

erties of Bayesian framework. However, it is

not adequate to assume a prior probability dis-

tribution for models based on an orthonormal

system, because the models are expressed by

using complex Fourier coefficients.

Hence, if the former model can be converted

to the latter, and vice versa, it is desirable in

a Bayesian experimental design framework. I

will show this in this section.

3.1 Notations for Experimental Designs

Let F1, F2, . . . , Fn denote the n factors to be

included in an experiment. Suppose each factor

has q levels, where q is a prime power.
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φ=0

αi(φ) = 0, (4)

q−1∑
φ=0

βi,j(φ, ψ) = 0, (5)

q−1∑
ψ=0

βi,j(φ, ψ) = 0 (6)

are assumed. Let the number of the indepen-

dent parameters of (3) be K, and u denote a

K-dimensional column vector.

Example 1 Consider q = 3, n = 2 and A =

{00, 10, 10, 11}.
Then, all parameters are given as fol-
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α1(1)
α2(0)
α2(1)

β1,2(0, 0)
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β1,2(1, 0)
β1,2(1, 1)




, (7)

□

3.3 Experimental Design Model Based
on an Orthonormal System

Firstly, the levels of each factor can be rep-

resented by GF (q), which is a Galois field of

order q, and the level combinations can be rep-

resented by the n-tuples x = (x1, x2, . . . , xn) ∈
GF (q)n. Then, the characters {Xa(x)|a ∈
GF (q)n} form an orthonormal system. For a

detailed information about characters, for ex-

ample, refer to [11].

I use t(x) to denote the response of the ex-

periment with level combination x and assume

the model [6]

t(x) =
∑
a∈IA

faXa(x) + ϵ, (8)

where IA = {(b1a1, . . . , bnan)|a ∈ A, bi ∈
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3

.
  The parameters The parameters {fa|a ∈ IA} are indepen-

dent. Let |IA| = K and IA = {a1,a2, . . . ,aK}.
Let (fa1 , fa2 , . . . , faK )T be denoted by w.

Then, (8) can be also expressed by the equa-

tion

t(x) = ϕ(x)Tw + ϵ, (9)

where

ϕ(x) =
[
Xa1(x)Xa2(x) . . .XaK (x)

]T
.

Moreover, consider the relation between u in

Sec. 3.2 and w in Sec. 3.3. In [8], the following

equations about the relation are already pro-

vided.

µ = f0...0. (10)

αl(φ) =
∑

al∈GF (q)
al ̸=0

Xal(φ)f0...0al0...0. (11)

βl,m(φ, ψ) =∑
al∈GF (q)

al ̸=0

∑

am∈GF (q)
am ̸=0

Xal(φ)Xam(ψ)f0...0al0...0am0...0.

(12)

Using these equations, we can construct a K×
K matrix M that satisfies the following equa-

tion:

u = Mw. (13)

As the rank of M is apparently K, the inverse

ofM also exists. Hence, the following equation

holds.

M−1u = w. (14)

Using (13) and (14), the traditional model

can be converted to the model based on or-

thonormal system, and vice versa. As we can

see in the next section, this converting is de-

sirable for deriving analytical properties in a

Bayesian experimental design framework.

Example 2 Consider q = 3, n = 2 and A =

{00, 10, 10, 11}. Then, IA = {00, 10, 20, 01,
02, 11, 12, 21, 22}, and w can be expressed by

w =




f00
f10
f20
f01
f02
f11
f12
f21
f22




. (15)

Let ω3 = e2πi/3. Using (10), (11), (12), and

Xl(k) = ωlk
3 from [11], M that satisfies (13)

for (7) and (15) are given as

M =




1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 ω3 ω2

3 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 ω3 ω2

3 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 ω3 ω2

3 ω3 ω2
3

0 0 0 0 0 ω3 ω3 ω2
3 ω2

3

0 0 0 0 0 ω2
3 1 1 ω3




.

(16)

Next, I explain M−1. First, let r1, s1, s2 de-

note

r1 =
1

ω2
3 − ω3

, (17)

s1 =
1− ω3

3(2 + ω3)
, (18)

s2 =
1 + 2ω3

3(2 + ω3)
. (19)

Then, the following equations are holds.

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α1(0)
α1(1)

]
=

[
f10
f20

]
. (20)

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α2(0)
α2(1)

]
=

[
f01
f02

]
. (21)
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Let the set A ⊆ {0, 1}n denote all factors and

interactions that might influence the response.

For a = (a1, a2, . . . , an) ∈ A, if ai = 0 for all

i (0 ≤ i ≤ n), then a denotes the general mean.

If ai = 1 and aj = 0 for all j (j ̸= i), then

a denotes Factor Fi. If ai = 1, aj = 1 and

ak = 0 for all k (k ̸= i, j), then a denotes the

interaction of Factor Fi and Factor Fj.

Let the set of index of factors SF = {i|ai =
1,a ∈ A1}, where A1 = {a|w(a) = 1,a ∈ A}
and w(a) is the Hamming weight of a. Let the

set of index of interactions SI = {{i, j}|ai =

1, aj = 1,a ∈ A2}, where A2 = {a|w(a) =

2,a ∈ A}.

3.2 Traditional Experimental Design
Model

Let t(x) denote the response of the experiment

with level combination x and assume the model

t(x) = µ+
∑
i∈SF

αi(xi) +
∑

{i,j}∈SI

βi,j(xi, xj) + ϵ,

(3)

where µ is the effect of general mean, αi(xi)

is the effect of the xith level of Factor Fi,

βi,j(xi, xj) is the effect of the interaction of the

xith level of Factor Fi and the xjth level of Fac-

tor Fj, and ϵ is a zero-mean Gaussian random

variable with variance σ2. Here, generally, the

constraints [5, p.249]

q−1∑
φ=0

αi(φ) = 0, (4)

q−1∑
φ=0

βi,j(φ, ψ) = 0, (5)

q−1∑
ψ=0

βi,j(φ, ψ) = 0 (6)

are assumed. Let the number of the indepen-

dent parameters of (3) be K, and u denote a

K-dimensional column vector.

Example 1 Consider q = 3, n = 2 and A =

{00, 10, 10, 11}.
Then, all parameters are given as fol-

lows: µ, α1(0), α1(1), α1(2), α2(0), α2(1), α2(2),

β1,2(0, 0), β1,2(0, 1), β1,2(0, 2), β1,2(1, 0), β1,2(1, 1),

β1,2(1, 2), β1,2(2, 0), β1,2(2, 1), β1,2(2, 2).

Using the constraints (4), (5) and (6), the

independent parameters can be given as follows:

µ, α1(0), α1(1), α2(0), α2(1), β1,2(0, 0), β1,2(0, 1),

β1,2(1, 0), β1,2(1, 1).

Hence, u can be expressed by

u =




µ
α1(0)
α1(1)
α2(0)
α2(1)

β1,2(0, 0)
β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)




, (7)

□

3.3 Experimental Design Model Based
on an Orthonormal System

Firstly, the levels of each factor can be rep-

resented by GF (q), which is a Galois field of

order q, and the level combinations can be rep-

resented by the n-tuples x = (x1, x2, . . . , xn) ∈
GF (q)n. Then, the characters {Xa(x)|a ∈
GF (q)n} form an orthonormal system. For a

detailed information about characters, for ex-

ample, refer to [11].

I use t(x) to denote the response of the ex-

periment with level combination x and assume

the model [6]

t(x) =
∑
a∈IA

faXa(x) + ϵ, (8)

where IA = {(b1a1, . . . , bnan)|a ∈ A, bi ∈
GF (q)} and ϵ is a zero-mean Gaussian random

variable with variance σ2.
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  Then, (8) can be also expressed by the 
equation

where

  Moreover, consider the relation between 

The parameters {fa|a ∈ IA} are indepen-

dent. Let |IA| = K and IA = {a1,a2, . . . ,aK}.
Let (fa1 , fa2 , . . . , faK )T be denoted by w.

Then, (8) can be also expressed by the equa-

tion

t(x) = ϕ(x)Tw + ϵ, (9)

where

ϕ(x) =
[
Xa1(x)Xa2(x) . . .XaK (x)

]T
.

Moreover, consider the relation between u in

Sec. 3.2 and w in Sec. 3.3. In [8], the following

equations about the relation are already pro-

vided.

µ = f0...0. (10)

αl(φ) =
∑

al∈GF (q)
al ̸=0

Xal(φ)f0...0al0...0. (11)

βl,m(φ, ψ) =∑
al∈GF (q)

al ̸=0

∑

am∈GF (q)
am ̸=0

Xal(φ)Xam(ψ)f0...0al0...0am0...0.

(12)

Using these equations, we can construct a K×
K matrix M that satisfies the following equa-

tion:

u = Mw. (13)

As the rank of M is apparently K, the inverse

ofM also exists. Hence, the following equation

holds.

M−1u = w. (14)

Using (13) and (14), the traditional model

can be converted to the model based on or-

thonormal system, and vice versa. As we can

see in the next section, this converting is de-

sirable for deriving analytical properties in a

Bayesian experimental design framework.

Example 2 Consider q = 3, n = 2 and A =

{00, 10, 10, 11}. Then, IA = {00, 10, 20, 01,
02, 11, 12, 21, 22}, and w can be expressed by

w =




f00
f10
f20
f01
f02
f11
f12
f21
f22




. (15)

Let ω3 = e2πi/3. Using (10), (11), (12), and

Xl(k) = ωlk
3 from [11], M that satisfies (13)

for (7) and (15) are given as

M =




1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 ω3 ω2

3 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 ω3 ω2

3 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 ω3 ω2

3 ω3 ω2
3

0 0 0 0 0 ω3 ω3 ω2
3 ω2

3

0 0 0 0 0 ω2
3 1 1 ω3




.

(16)

Next, I explain M−1. First, let r1, s1, s2 de-

note

r1 =
1

ω2
3 − ω3

, (17)

s1 =
1− ω3

3(2 + ω3)
, (18)

s2 =
1 + 2ω3

3(2 + ω3)
. (19)

Then, the following equations are holds.

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α1(0)
α1(1)

]
=

[
f10
f20

]
. (20)

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α2(0)
α2(1)

]
=

[
f01
f02

]
. (21)
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s1 =
1− ω3
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=
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=
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Then, the following equations are holds.

Hence, 




s1 −s2 −s2 −1
1 s2 s1 1
1 s1 s2 1
s2 −s1 −s1 −1







β1,2(0, 0)
β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)


 =




f11
f12
f21
f22


 .

(22)

Hence, M−1 is given as follows.

M−1 =


1 0 0 0 0 0 0 0 0
0 r1ω

2
3 −r1 0 0 0 0 0 0

0 −r1ω3 r1 0 0 0 0 0 0
0 0 0 r1ω

2
3 −r1 0 0 0 0

0 0 0 −r1ω3 r1 0 0 0 0
0 0 0 0 0 s1 −s2 −s2 −1
0 0 0 0 0 1 s2 s1 1
0 0 0 0 0 1 s1 s2 1
0 0 0 0 0 s2 −s1 −s1 −1




.

(23)

□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=




Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)

5
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be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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


s1 −s2 −s2 −1
1 s2 s1 1
1 s1 s2 1
s2 −s1 −s1 −1







β1,2(0, 0)
β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)


 =




f11
f12
f21
f22


 .

(22)

Hence, M−1 is given as follows.

M−1 =


1 0 0 0 0 0 0 0 0
0 r1ω

2
3 −r1 0 0 0 0 0 0

0 −r1ω3 r1 0 0 0 0 0 0
0 0 0 r1ω

2
3 −r1 0 0 0 0

0 0 0 −r1ω3 r1 0 0 0 0
0 0 0 0 0 s1 −s2 −s2 −1
0 0 0 0 0 1 s2 s1 1
0 0 0 0 0 1 s1 s2 1
0 0 0 0 0 s2 −s1 −s1 −1




.

(23)

□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=




Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)
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  Under the assumption that these target 

The parameters {fa|a ∈ IA} are indepen-

dent. Let |IA| = K and IA = {a1,a2, . . . ,aK}.
Let (fa1 , fa2 , . . . , faK )T be denoted by w.

Then, (8) can be also expressed by the equa-

tion

t(x) = ϕ(x)Tw + ϵ, (9)

where

ϕ(x) =
[
Xa1(x)Xa2(x) . . .XaK (x)

]T
.

Moreover, consider the relation between u in

Sec. 3.2 and w in Sec. 3.3. In [8], the following

equations about the relation are already pro-

vided.

µ = f0...0. (10)

αl(φ) =
∑

al∈GF (q)
al ̸=0

Xal(φ)f0...0al0...0. (11)

βl,m(φ, ψ) =∑
al∈GF (q)

al ̸=0

∑

am∈GF (q)
am ̸=0

Xal(φ)Xam(ψ)f0...0al0...0am0...0.

(12)

Using these equations, we can construct a K×
K matrix M that satisfies the following equa-

tion:

u = Mw. (13)

As the rank of M is apparently K, the inverse

ofM also exists. Hence, the following equation

holds.

M−1u = w. (14)

Using (13) and (14), the traditional model

can be converted to the model based on or-

thonormal system, and vice versa. As we can

see in the next section, this converting is de-

sirable for deriving analytical properties in a

Bayesian experimental design framework.

Example 2 Consider q = 3, n = 2 and A =

{00, 10, 10, 11}. Then, IA = {00, 10, 20, 01,
02, 11, 12, 21, 22}, and w can be expressed by

w =




f00
f10
f20
f01
f02
f11
f12
f21
f22




. (15)

Let ω3 = e2πi/3. Using (10), (11), (12), and

Xl(k) = ωlk
3 from [11], M that satisfies (13)

for (7) and (15) are given as

M =




1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 ω3 ω2

3 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 ω3 ω2

3 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 ω3 ω2

3 ω3 ω2
3

0 0 0 0 0 ω3 ω3 ω2
3 ω2

3

0 0 0 0 0 ω2
3 1 1 ω3




.

(16)

Next, I explain M−1. First, let r1, s1, s2 de-

note

r1 =
1

ω2
3 − ω3

, (17)

s1 =
1− ω3

3(2 + ω3)
, (18)

s2 =
1 + 2ω3

3(2 + ω3)
. (19)

Then, the following equations are holds.

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α1(0)
α1(1)

]
=

[
f10
f20

]
. (20)

[
r1ω

2
3 −r1

−r1ω3 r1

] [
α2(0)
α2(1)

]
=

[
f01
f02

]
. (21)
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equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where
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4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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Hence, M−1 is given as follows.
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where
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 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=


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. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


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(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=




Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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Hence, M−1 is given as follows.
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=


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Xa1(x1) Xa2(x1) . . . XaK (x1)
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. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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Hence, M−1 is given as follows.
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where
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
 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function
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4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as
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{x1, . . . ,xN} with corresponding target val-
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by t.

Under the assumption that these target val-
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=
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4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
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results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.
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4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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 after we have observed In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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as a 
known constant.
Theorem 1 Let the likelihood function 
be given by (26). The corresponding 
conjugate prior is given by a Gaussian 
distribution of the form

  Then the posterior probability is given 
by the equation

where

Proof of Theorem 1:

  Using Bayes' theorem, the posterior 
distribution can be written as




s1 −s2 −s2 −1
1 s2 s1 1
1 s1 s2 1
s2 −s1 −s1 −1







β1,2(0, 0)
β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)


 =




f11
f12
f21
f22


 .

(22)

Hence, M−1 is given as follows.

M−1 =


1 0 0 0 0 0 0 0 0
0 r1ω

2
3 −r1 0 0 0 0 0 0

0 −r1ω3 r1 0 0 0 0 0 0
0 0 0 r1ω

2
3 −r1 0 0 0 0

0 0 0 −r1ω3 r1 0 0 0 0
0 0 0 0 0 s1 −s2 −s2 −1
0 0 0 0 0 1 s2 s1 1
0 0 0 0 0 1 s1 s2 1
0 0 0 0 0 s2 −s1 −s1 −1




.

(23)

□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=




Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where
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4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)
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In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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where the variance σ2
N(x) of prediction distri-
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system, the predictive distribution can also be
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
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
 =
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f12
f21
f22


 .
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Hence, M−1 is given as follows.
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4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System
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through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.
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ues are drawn independently, the next expres-
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the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form
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p(t|X,u)p(u)

p(X, t)
. (28)
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β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)


 =




f11
f12
f21
f22


 .

(22)

Hence, M−1 is given as follows.

M−1 =


1 0 0 0 0 0 0 0 0
0 r1ω

2
3 −r1 0 0 0 0 0 0

0 −r1ω3 r1 0 0 0 0 0 0
0 0 0 r1ω

2
3 −r1 0 0 0 0

0 0 0 −r1ω3 r1 0 0 0 0
0 0 0 0 0 s1 −s2 −s2 −1
0 0 0 0 0 1 s2 s1 1
0 0 0 0 0 1 s1 s2 1
0 0 0 0 0 s2 −s1 −s1 −1




.

(23)

□

4 Bayesian Experimental Design
Model Based on an Orthonor-
mal System

In Sec.3, it is shown that models expressed

through the effect of each factor can be con-

verted to those based on an orthonormal sys-

tem. As models based on an orthonormal sys-

tem are linear combinations of basis functions,

we can apply some analytical properties by

Bishop [4] to this model. This section uses the

results of [4, Section 3.3] to show that the pos-

terior distribution and predictive distribution

can also be analytically derived in the Bayesian

experimental framework.

4.1 Likelihood Function

As explained in Sec. 3.3, it is assumed that tar-

get variable t(x) is given by a deterministic

function with additive noise, which is a zero-

mean Gaussian random variable with variance

σ2.

Hence, using (9) and (14), the likelihood

function is given as

p(t|x,u, σ2) = N (t|ϕ(x)TM−1u, σ2).(24)

Consider a data set of inputs X =

{x1, . . . ,xN} with corresponding target val-

ues t(x1), . . . , t(xN). Let the variables

{t(x1), . . . , t(xN)} be a column vector denoted

by t.

Under the assumption that these target val-

ues are drawn independently, the next expres-

sion for the likelihood function is obtained as

p(t|X,u, σ2)

=
N∏

n=1

N (t(xn)|ϕ(xn)
TM−1u, σ2). (25)

Moreover, the likelihood function

p(t|X,u, σ2) can also be expressed by the

equation

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I), (26)

where

Φ=




Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN) Xa2(xN) . . . XaK (xN)


 .

(27)

4.2 Bayesian Approach

In a Bayesian framework, we can assume a prior

probability distribution of u, which is denoted

by p(u). Under the observed data, X and t,

the posterior probability distribution of u can

be calculated by using Bayes’ theorem, which

takes the form

p(u|X, t) =
p(t|X,u)p(u)

p(X, t)
. (28)

5

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.

6
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where 

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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 are given by (31), (32) 
respectively, and const denotes quantities 
independent of 

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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 We see that as a fun-
ction of 

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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 this is also a quadratic form, 
and hence the posterior distribution will 
be Gaussian with mean vector 

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp

{
− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
{
−1

2
(u−m0)

TS−1
0 (u−m0)

}

= exp

{
−1

2
uT

(
1

σ2
(M−1)TΦTΦM−1 + S−1

0

)
u

+uT

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
+ const

}

= exp

{
−1

2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-

terior distribution will be Gaussian with mean

vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution

In experimental designs, it is important to con-

sider the predictive distribution. The predic-

tive distribution [12] is defined by

p(t|x, t, σ2) =

∫
p(t|x,u, σ2)p(u|X, t, σ2)du.

(34)

The predictive distribution shown by

Bishop [4, Sec. 3.3.2] can be also applied

to this Bayesian experimental design frame-

work.

If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation
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,
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}
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)
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}
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,
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where mN , S−1
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pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-
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vector mN and covariance matrix SN . □

Theorem 1 shows that the posterior distribu-

tion can also be analytically derived within a

Bayesian experimental framework.

4.4 Predictive Distribution
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If the conditional distribution p(t|x,u, σ2) is

given by (24) and the posterior distribution is

given by (30), then the predictive distribution

is given as

p(t|x, t, σ2) = N (t|mT
Nϕ(x), σ

2
N(x)),(35)

where the variance σ2
N(x) of prediction distri-

bution is given by

σ2
N(x) = σ2 + ϕ(x)TSNϕ(x). (36)

Generally, it is difficult to derive the predic-

tive distribution analytically. However, using

experimental models based on an orthonormal

system, the predictive distribution can also be

analytically derived in a Bayesian experimental

framework.
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� □
  Theorem 1 shows that the posterior 
distribution can also be analytically 
derived within a Bayesian experimental 
framework.

4.4 Predictive Distribution

In experimental designs, it is important to 
consider the predictive distribution. The 
predictive distribution [12] is defined by

  The predictive distribution shown by 
Bishop [4, Sec. 3.3.2] can be also applied to 
this Bayesian experimental design frame-
work.
  I f  t h e  c ond i t i o na l  d i s t r i bu t i on 

In other words, we can evaluate the uncertainty

in u after we have observed X and t, in the

form of the posterior probability p(u|X, t).

4.3 Prior and Posterior Probability

As described, I assume a prior probability dis-

tribution over the model parameters u. I will

treat the variance σ2 as a known constant.

Theorem 1 Let the likelihood function be

given by (26). The corresponding conjugate

prior is given by a Gaussian distribution of the

form

p(u) = N (u|m0,S0). (29)

Then the posterior probability is given by the

equation

p(u|X, t, σ2) = N (u|mN ,SN), (30)

where

mN = SN

(
1

σ2
(M−1)TΦT t+ S−1

0 m0

)
,

(31)

S−1
N =

1

σ2
(M−1)TΦTΦM−1 + S−1

0 . (32)

Proof of Theorem 1:

Using Bayes’ theorem, the posterior distribu-

tion can be written as

p(u|X, t, σ2)

∝ p(t|X,u, σ2)p(u)

= N (t|ΦM−1u, σ2I)N (u|m0,S0)

∝ exp
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− 1

2σ2
(t−ΦM−1u)T (t−ΦM−1u)

}

· exp
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−1

2
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}
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2
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)
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+uT
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(M−1)TΦT t+ S−1
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)
+ const

}

= exp
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2
(u−mN)

T S−1
N (u−mN) + const

}
,

(33)

where mN , S−1
N are given by (31), (32) re-

spectively, and const denotes quantities inde-

pendent of u. We see that as a function of u,

this is also a quadratic form, and hence the pos-
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widely, especially in health care, where a 
Bayesian framework is necessary because 
the experiments are expensive.

Acknowledgment

This research is partially supported 
by JSPS KAKENHI Grant Number 
JP17K00316 and the Academic Committee 
of Yokohama College of Commerce.

References

[1] �D. V. Lindley, Bayesian Statistics, a Review, 
Philadelphia, 1972.

[2] �J.O. Berger, Statistical Decision Theory, 
Foundations ,  Concepts and Methods, 
Springer, New York, 1980.

[3] �K. Chaloner and I. Verdinelli, "Bayesian 
Experimental Design: A Review," Statistical  
Science, Vol.10, No.3, pp.273-304, 1995.

[4] �C.M. Bishop, Pattern Recognition and 
Machine Learning, Springer, 2010.

[5] �H. Toutenburg and Shalabh, Statistical 
Analysis of Designed Experiments (Third 
Edition), Springer, 2009.

[6] �Y. Ukita, T. Saito, T. Matsushima and S. 
Hirasawa, "A Note on the Relation between 
a Sampling Theorem for Functions over a 
GF(q)n Domain and Linear Codes," in Proc. 
2009 IEEE Int. Conf. on SMC, pp.2665-2670, 
San Antonio, USA, Oct. 2009.

[7] �Y. Ukita, T. Saito, T. Matsushima and S. 
Hirasawa, "A Note on a Sampling Theorem 
for Functions over GF(q)n Domain," IEICE 
Trans. Fundamentals, Vol.E93-A, no.6, 
pp.1024-1031, June 2010.

[8] �Y. Ukita and T. Matsushima, "A Note on 
Relation between the Fourier Coefficients 
and the Effects in the Experimental Design," 
in Proc. 8th Int. Conf. on Inf., Comm. and 
Signal Processing, Singapore, Dec. 2011.

[9] �Y. Ukita, "Relation between the Fourier 
coefficients and the interaction effects 
expressed by using Kronecker product in 
the experimental design," The Yokohama 
Shodai Ronshu, Vol.49, No.1, pp.9-17, Sep. 
2015.

[10] �Design and Analysis of Experiments in 
Healthcare, Isaac Newton Institute for 
Mathematical Sciences, University of 
Cambridge, 6-10 July 2015.

[11] �E.M. Stein, R. Shakarchi, Fourier Analysis: 
An Introduction, Princeton University 



10

商　　大　　論　　集

Press, 2003.
[12] �T .  Matsushima ,  H .  Inazumi and S . 

Hirasawa, "An inductive inference proce-
dure to minimize prediction error," IEEE 
Transactions on Systems, Man, and 
Cybernetics, Vol.23, No.2, pp.547-554, 1993.


