Relation between the Fourier coefficients and the interaction effects

expressed by using Kronecker product in the experimental design

Yoshifumi Ukita

Abstract

In this paper, I present that the relation be-
tween the Fourier coefficients and the interac-
tion effects in the experimental design can be
more easily expressed by using Kronecker prod-
uct. From the result, the interaction effects can
be easily obtained from the Fourier coefficients.
Therefore, it is possible to implement the esti-
mation procedures easily as well as to under-
stand how any interaction affects the response
variable in the model based on an orthonormal
system.
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1 Introduction

In most areas of scientific research, experi-
mentation is a major tool for acquiring new
knowledge or a better understanding of the
target phenomenon. Experiments usually aim
to study how changes in various factors affect
the response variable of interest [1]. Since the
model used most often at present in experi-
mental design is expressed through the effect of
each factor, it is easy to understand how each
factor affects the response variable [2, 5, 6].
However, since the model contains redundant
parameters and is not expressed in terms of an

orthonormal system, it often takes much time
to implement the procedure for estimating the
effects.

On the other hand, it has recently been
shown that the model in experimental design
can also be expressed in terms of an orthonor-
mal system [7, 8, 11]'. In this case, the model
is expressed by using Fourier coefficients in-
stead of the effect of each factor. As there is
an abundance of software for calculating the
Fourier transform, such a system allows for a
straightforward implementation of the proce-
dures for estimating the Fourier coefficients by
using Fourier transform. Moreover, the effects
as for the general mean, the main factor and
the interaction can be obtained from the com-
puted Fourier coefficients because the relation
has been obtained [9, 10]. However, because
the relation about the interaction are compli-
cated, it is often difficult to obtain the interac-
tion effects from the Fourier coefficients.

In this paper, I present that the relation can
be more easily expressed by using Kronecker
product. From this result, any interaction ef-
fects can be easily obtained from the Fourier
coefficients. Therefore, it is possible to imple-
ment the estimation procedures easily as well
as to understand how any interaction affects
the response variable in the model based on an
orthonormal system.

1The model of [7, 8] is different from that of previous works
(the model expressed through the effect of each factor), but the
applications are the same.



2 Preliminaries

2.1 Fourier Analysis on Finite Abelian
Groups

Here I give a brief explanation of Fourier analy-
sis on finite Abelian groups. Characters play an
important role in the context of finite Fourier
series.

2.1.1 Characters [4]

Let G be a finite Abelian group (with the multi-
plicative notation) and S* the unit circle in the
complex plane. A character on G is a complex
valued function X : G — S! which satisfies the
condition

X(x-2)=Xx)X(x) Ve, ' €G. (1)

In other words, a character is a homomorphism
from G to the circle group.

2.1.2 Fourier Transform [3]

Let Gi,i = 1,2,...,n, be Abelian groups of
orders |Gi| = g;,i =1,2,...,n,01 < g2 < -+ <
Jn, and

G=x1,G and g=]]g

We write the group operations additively G; =
(G;,+). Because the character group of G is
isomorphic to G, we can index the characters
by the elements of G, i.e., {Xq(x)|a € G} are
the characters of G. Note that Xg(x) is the
principal character and it is identically equal
to 1. The characters {Xq(x)|a € G} form an
orthonormal system:

_ZXG

:l:eG

-0 Lz @

where X7 (x) is the complex-conjugate of

Any function f : G — C, where C is the field
of complex numbers, can be uniquely expressed
as a linear combination of the characters:

= E faXa(fB)a (4)
e
where the complex number

Z flz (5)
meG
is the a-th Fourier coefficient of f.

2.2 Fourier Analysis on GF(q)" [8]

Suppose ¢ is a prime power. Let GF(q) be a
Galois field of order g, where a Galois field is a
field that contains finite elements. We also use
GF(q)™ to denote the set of all n-tuples with
entries from GF(q). The elements of GF(q)"
is referred to as vectors .
Example 1 Consider GF(3) = {0,1,2} and
n =>5. Then
GF(3)° = {00000,10000, - - -, 22222}  (6)
and |GF(3)°| = 243. O
Specifying the group G in Sect.2.1.2 to be
the support group of GF(q)™ and g = ¢", the

relations (3), (4) and (5) also hold over GF(q)™
domain.

2.3 Kronecker product

In this subsection, I introduce the definition of
Kronecker product.

Definition 1 Let A = (a;;) and B = (b;;) be
respectively m x m and u X v matrices. Their
Kronecker product, denoted by A ® B, is the
mu X nv matrix

CL11B a12B N alnB
anB apB ... a,B

A &® B= 2% 2? A 2- ) (7)
1B 2B ... GmnB

where a;;B stands for the u x v matriz with
entries a;b.s(1 <7 <wu,1 <s<v). O
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3 Experimental Design

In this section, I provide a short introduction
to experimental design. For a detailed expla-
nation, refer to [6].

3.1 Experimental Design Model [6]

Let Fi, Fs, ..., F, denote the n factors to be
included in an experiment. The levels of each
factor can be represented by GF(g), and the
level combinations can be represented by the
n-tuples © = (21, 22, ...,2,) € GF(q)™

Example 2 Let Machine (Fi) and Worker
(F3) be factors that might influence the quan-
tity of a product. Suppose each factor has two
levels.

F, : new machine (level 0), old machine
(level 1).

Fy : skilled worker (level 0), unskilled worker
(level 1).

For example, = 01 represents a combina-
tion of new machine and unskilled worker.

Then, the effect of the machine, averaged
over both workers, is referred to as the effect
of main factor Fy. Similarly, the effect of the
worker, averaged over both machines, is re-
ferred to as the effect of main factor Fy. And
the contrast between the effect of the machine
for an unskilled worker and the effect of the ma-
chine for a skilled worker is referred to as the
effect of the interaction of Fy and Fy. O

Let the set A C {0,1}" represent all fac-
tors that might influence the response of the
experiment. The Hamming weight w(a) of
a vector @ = (ay,4az,...,a,) € A is defined
as the number of nonzero components. The
main factors are represented by M F = {i|a; =
1l,a € A}, where Ay = {alw(a) = 1,a €
A}. The interactive 2-factors are represented
by IF, = {{z,]}|a1 = l,a; = l,a € AQ},
where Ay, = {a|lw(a) = 2,a € A}. the in-

teractive 3-factors are represented by [Fj =
{{i,j,k}ai = 1,a; = 1,ar, = 1,a@ € A3}, where
As = {alw(a) = 3,a € A}. The interaction
between more than three factors is also repre-
sented similarly.

Example 3 Consider A = {000,100, 010, 001,
110}. Then, A; = {100,010,001} and M F =
{1,2,3}, Ay = {110} and IF, = {{1,2}}.

For example, 1 € M F indicates the main fac-
tor of Fy and {1,2} € IF, indicates the inter-
active 2-factor of Fy and Fs. O

It is usually assumed that the set A satisfies
the following monotonicity condition [2].

Definition 2 Monotonicity

acA—-beA Vb(bCa), (8)

where (b1, ba,...,b,) C (a1,a9,...,a,) means
that if a; =0 then b; =0,i=1,2,...,n. O

Example 4 Consider A = {00000, 10000,
01000, 00100, 00010, 00001, 11000, 10100,
01100,10010, 11100}.

Because the set A satisfies (8), A is mono-
tonic. , a

Let y(x) denote the response of the experi- ‘
ment with level combination & and assume the
model

y(x) = ,U-i-ZOéi(ﬂ?i) + Z Bz‘,j(xhxj)

i€MF {i.4}elF, v
+ Z Vi (Tis T, Tk) + €z, (9)
(i.gk}YEIFs

where p is the general mean, o;(z;) is the ef-
fect of the z;-th level of Factor F;, B ;(z;, x;)
is the effect of the interaction of the z;-th level
of Factor F; and the x;-th level of Factor Fj,
Vi e(Ti, T, k) is the effect of the interaction
of the z;-th level of Factor F;, the z;-th level
of Factor F; and the z;-th level of Factor Fi
and eg is a random error with zero mean and
constant variance o2.



(4] x

%

B

Since the model is expressed through the ef-
fect of each factor, it is easy to understand how
each factor affects the response variable. How-
ever, because the constraints Zq_l () =

0, Zq 0 Biiles ) = Z /sz(% Y) =0,
Zq;:o%,g,k(@ﬂ/}ag) = O’ Z¢:0%»J7 (%iﬁ,f) =
0, Zg;[l)'yi,j,k(go,qp,f) = 0, are assumed, the
model contains redundant parameters. There-
fore, since the model contains redundant pa-
rameters and is not expressed in terms of an
orthonormal system, it often takes much time
to implement the procedure for estimating the
effects.

Example 5 Consider GF(3) = {0, 1,2},

= 5 and A = {00000, 10000, 01000, 00100,
00010, 00001, 11000, 10100, 01100, 10010,
11100}.

Then, w, 01(0), a1 (1), @1(2), a2(0), aa(1),
2(2), a3(0), a3(1), 3(2), 04 (0), s (1), cxa(2
a5(0),a5(1),a (2) ,81 2(0 0) ,61 2(0 1

’71,2,3(27 2, 0), Y,2,3(2,2, 1), 71,2,3(2, 2,2),

are parameters. Hence, the number of param-

eters 1s 79. Howewver, by the constraints, the

number of the independent parameters is 35.
: O

In experimental design, we are given a model
of the experiment. That is, we are given a
set A C {0,1}". First, we determine a set
of level combinations z € X, X C GF(q)™.
The set X is called a design. Then, we per-
form a set of experiments according to the de-
sign X and estimate the effects from the result,
{(@,y(@)|z € X}.

An important standard for evaluating experi-
mental designs is the maximum of the variances
of the unbiased estimators of effects calculated
from the result of the experiments. It is known
that, for a given number of experiments, this
criterion is minimized in an orthogonal design
[6]. Therefore, there has been much research
into orthogonal designs [1, 5].

3.2 Orthogonal Designs [5]
Definition 3 (Orthogonal Designs)

Define v(a) = {ila; # 0,1 < i < n}. For
A C{0,1}", let Hy be the m x n matriz
hii hia .. hi
m= |t )
.

The entries in this matriz, hi; € GF(q) (1 <
1 < k,1 <j < n), satisfy the following condi-
tions.

1. The set {h;|j € v(a’' + a")}?, where h.; is
the j-th column of H 4, is linearly indepen-
dent over GF(q) for any given a’,a” € A.

2. The set {h;|1 < i < m}, where h;. is the
i-th row of H 4, is linearly independent over

GF(q)

An orthogonal design C* for main and inter-
active factors A C {0,1}" is defined by

={x|lx =rHa, v €GF(9"},  (11)

2For a1 = (a11,a12,...,01n),@2 = (a21,a22,...,a2n) €
{0,1}™, the addition of vectors a; and ay is defined by a1+ az =
(a11 @ a21,a12 D agz,...,a1n ® azn), where @ is the ezclusive or
operation.
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and |C*| = ¢™. O

Many algorithms for constructing H, have
been proposed [1, 5. However, it is still a
very difficult problem to construct H, when
the number of factors n is large and many in-
teractions are included in the model. In this
letter, the algorithm is not included because
the construction of orthogonal designs is not
the purpose of this letter.

3.3 Estimation of the Effects in Exper-
imental Designs [6]

First, I make the following definitions.

Y=3 y), (12)

Tect

where |C| = ¢™.

Yile) = Y. yl@), (13)
TeCH(p)
where Ci(¢) = {z|z; = ¢,z € C*} and
G ()] = g™
Yalew)= > w@), (14

meciJ:j (:3)

where Czl,g((p)d}) = {CB'.’EZ =@, T; = Y,z € CJ_}
and lCifj(go,apﬂ =qgm 2

Yislp, )= > y@), (15)

(BEC'iJ"jyk(w,lb,&)

where CF (0,9, €) = {z|z; = ¢, x; = ¢,z =
§xe O} and [CF (0,9, 8)| = ™2

Let § = =Y, 5i(yp) = = Yily), Gig(0,9)
qm;—zifi,j((pv ¢)a
gi,j,k((pv wu 5) = qm;—3Y—i,j,k(<pv wa 5)

Then, the unbiased estimates of the parame-
ters in (9) are given by

=g, (16)
i(p) — i, (17)

) i(p) =
Bii(p, ) = Tij(p, ) — du(e) — G;(v)

— by (18)
Figk (2:0,€) = Tijnlp,1,6) = Bijlep, )

—Bik(0,€) — Biw(h, &) — ()

—G;(¥) — (&) — fu. (19)

4 Estimation of the Effects in
the Experimental Design using
Fourier Transforms

4.1 Experimental Design Model based
on an Orthonormal System

We use y(x) to denote the response of the ex-
periment with level combination & and assume
the model

y@) = > faXa(@)+ex, (20)
aeiy,
where Iy = {(biai,...,bpan)la € Ab; €
GF(q)} and ez is a random error with zero
mean and constant variance.
Then, the effects are represented by unknown
parameters {fala € 14}

Example 6 Consider GF(3) = {0, 1,2},
n = 5 and A = {00000, 10000, 01000,00100,
00010, 00001, 11000, 10100, 01100, 10010,11100}.
Then, fo0000, J10000, f200005 f010005 fo2000, foo100,
Jfo0200, f00010, f000205 foo001, fooo02, f110005 f12000,
J210005 f22000, f101005 f10200, f201005 f20200, fo11005
Jo1200, fo2100, 02200, f100105 f10020, f20010, Sf20020,
Ji11005 f11200, 121005 f122005 f211005 f21200, fo2100,
fa2000, are parameters. The number of pa-
rameters is 3b, and these parameters are
independent. O

4.2 Estimation of the Effects in Exper-
imental Designs

First, I recall the following theorem.

Theorem 1 (Sampling Theorem for Bandlim-
ited Functions over
a GF(q)" Domain [7])
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Suppose A C {0,1}" is monotonic and

f®) =" faXa(®), (21)
acly
where Ix = {(bia,...,bpa,)la € Ab, €
GF(q)}. Then, the Fourier coefficients can be
computed by

fo=— Y f@Xye), (22

m
q Trect

where C* is an orthogonal design for
A (CH =q™). O

When we experiment according to the or-
thogonal design C*, we can obtain unbiased
estimators of the fg in (20) using Theorem 1
and the assumption that E(ez) = 0,

fo=— 3 y@)xgx).  (23)
q rect

Then, we can easily estimate the effects using
Fourier transforms. There are Fourier trans-

forms softwares to calculate (23) for any mono-

tonic set A.

In particular, when ¢ = 2 where i is a inte-
ger and ¢ > 1, we can use the vector-radix fast
Fourier transform (FFT), which is a multidi-
mensional fast Fourier transform, to calculate
(23) for all @ € I4. The complexity of vector-
radix FFT is O(¢™log ¢™).

5 Relation Between the Fourier
Coefficients and the Effects

In this section, I refer the theorems of the re-
lation between the Fourier coefficients and the
Effects (the general mean, the main factor and
the interaction).

First, a theorem of the relation between the
Fourier coefficient and the general mean was
given as follows.

Theorem 2 [9/

Let [i be the unbiased estimator of the general
mean p in the model of Sect.3.1, and let f‘gu_o be
that of the Fourier coefficient fo_o in the model
of Sect.4.1.

Then, the following equation holds:

= fo...0- (24)
O

Second, a theorem of the relation between the
Fourier coefficients and the effect of the main
factor was given as follows.

Theorem 3 [9]

Let &;(¢p) be the unbiased estimator of the ef-
fect of the main factor a;(¢) in the model of
Sect. 8.1, and let fO..,OaiO..‘O be that of the Fourier
coefficient fo..0a0..0 10 the model of Sect.4. 1.

Then, the following equation holds:

a;(p) = Z X, (10) fo...0as0..0- (25)

aiEGF(q)

a; 750
|

Next, a theorem of the relation between the
Fourier coefficients and the effect of the 2-factor
interaction was given as follows.

Theorem 4 [9]

Let Bi,j(ga, 1) be the unbiased estimator of the
effect of the interaction f5; ;(p,) in the model
of Sect.3.1, and let fAO.A.OaiO..‘Oa,jO‘..O be that of the
Fourier coefficient fo..0a;0..0a50..0 @n the model
of Sect.4.1.

Then, the following equation holds:

Biaj (907 1/)) =
Z Z Xai((p)xa]’ (w)fo...Oa,-O‘.‘Oajo,_,o.

a;€GF(q) a;€GF(q)
a; 70 a;#0

(26)
O

Last, a theorem of the relation between the
Fourier coefficients and the effect of the 2-factor
interaction was given as follows.
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Theorem 5 [10]

Let #jk(e,9,€) be the unbiased esti-
mator of the effect of the interaction
Yijk(p, ¥, &) in the model of Sect.3.1, and
let fO...OaiO...OajO..‘OakO‘..O be that Of the Fourier
coefficient fo..0a;0..04;0..0a40..0 11 the model of

Sect.4.1.
Then, the following equation holds:

’%,j,k(% ¢,§) =

2 2 X

a;€GF(q) a;€GF(q) ax€GF(q)
a;7#0 a;#0 ar#0

Ko, () Xy (V) Xy (f)fO..AOaiO...OajO.‘.OakO...0-
(27)

O

" Hence, by these theorems, the effects as for
the general mean, the main factor and the in-
teraction can be obtained from the computed
Fourier coefficients.

However, because the relation about the in-
teraction are complicated, it is often difficult to
obtain the interaction effects from the Fourier
coefficients.

6 Relation Between the Fourier
Coefficients and the Effects
expressed by using the Kro-
necker product

In this section, I give the new relations be-
tween the Fourier coefficients and the effects
expressed by using the Kronecker product.

Equation (25) can be written as follows.

[ A0) - X (0)
B B 1) RS ()
L (-1 Aag- 1)
[ ]fo‘..om...o
fo‘..0'20...0 7 (28)
| fo..00-10..0
Equation (26) can be written as follows.
ﬂ:i,j(()?O)

Bi;(0,1)

Bigla—1,0~-1)
X(0) e A (0)
I I XC I
Xg—1) - Xalg—1)
X1(0) Xq-1(0)

% Xl;(l) Xq—:1(1)
Xi(g—1) Xg1(g—1)
Jfou.om‘..ow...o
fo...010:..020..‘0 ’ (29)

fo0...0g-10...04-10..0

Equation (27) can be written as follows.

'Aﬁj,k(ov 0, 0)
:Yi,j,k(oa 07 1)

Yigk(@—1,9g—1,¢—1)

X (0) e Xq—l(o)
B A1) - A1)
Xig=1) - Xpalg—1)
X (0) oo Aa(0)
o Xl;(l) e Xq—zl(l)
Xi(g—1) Xya(g=1)
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X100 o Aa(0)
PAE IS
Xl(q._ 1) Xq—l(.q —~1)

fO...OlO...OlO...OlO...O

fO..‘010...0.10...020..40 , (30)

f0...04-10...0g-10...0¢—10...0

Example 7 Let ¢ = 3 and n = 5. Consider

the general mean, the effect of main factor Fi,

and the effect of the interaction of Fy and Fy.
Then, from [4],

/t}(k) — eQﬂ‘ilk/?). (31)
Define
1 1
A= e27ri/3 e47ri/3 ) (32)

647Ti/3 e27ri/3
Then, using (28) and (81), the equation
61(0) f
&1<1) — A [ A10000 :| , (33)
61(2) 20000

hold. Hence, it is clear that the effects of main
factor Fy (3 parameters) can be obtained from
the computed Fourier coefficients (2 parame-

ters).
Nezt, using (29) and (81), the following equa-
tion
[ 512(0,0) ]
P, 2(0,1)
) 2(1’ 0) 11000
312(1’1) —A® A J12000 . (34)
Bra(1,2) 21000
Bl 2(2’ 0) f22000
Bra(2,1)
L 12(2,2) |

hold. Hence, it is clear that the effects of the
interaction of Fy and Fy (9 parameters) can be

obtained from the computed Fourier coeffictents
(4 parameters).

Last, using (30) and (31), the following equa-
tion

o

N ONFRFONFHFONFHFONFONMFEONF ONRFE ONRF O

e e e e~ e e e e e e N N T e T e e T S S e S e S e e

o

Ji1100
J11200
fi2100
J12200
Jar100
Ja1200
Jaz100
| fo200 |

=ARA®A

ML\D[\D)—‘D—\I—‘OOOMI\’)\’MI—J)—\D—JOOO[\D[\DL\DHP—‘

L ':/1,2,3

(35)
hold. Hence, it is clear that the 3-factor inter-
action effects (27 parameters) can be obtained
from the computed Fourier coefficients (8 pa-
rameters). O

Hence, using the new relations between the
Fourier coefficients and the Effects by using the
Kronecker product, the interaction effects can
be easily obtained from the Fourier coefficients.

Moreover, it is clear that the matrix A is used
in calculating the effects of all main factor and
interaction. It means that we can reduce the
amount of memory needed in the calculation.
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7 Conclusion

In this paper, I have presented that the relation
between the Fourier coefficients and the inter-
action effects in the experimental design can
be more easily expressed by using Kronecker
product. From the result, the interaction ef-
fects can be easily obtained from the Fourier
coefficients. Therefore, it is possible to imple-
ment the estimation procedures easily as well
as to understand how any interaction affects
the response variable in the model based on an
orthonormal system.
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