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Abstract

In this paper, we argue several decompositions of w-regular sets into rational
G; sets. We measure the complexity of w-regular sets by the number of rational
Gs sets obtained by the decompositions. Barua (1992) studied a hierarchy
Ral(n =1,2,3,--), where R, is a class of w-regular sets which are decomposed
into n rational Gj sets forming a decreasing sequence. On the other hand,
Kaminski (1985) defined a hierarchy By,(m = 1,2,3, - ), where By, is a class
of w-regular sets which are decomposed into 2m rational G; sets not necessarily
forming a decreasing sequence. As a main result, we claim that Rz, = B, in
spite of the differences of defining conditions.

1 Introduction

Since the original work by Biichi[2], many creative studies on w-
languages have been accomplished (cf. [5], [7], [8], [9]). Among them,
- Landweber|7], and Takahashi and Yamasaki[8] clarified a close rela-
tion between classes of w-languages defined on the Borel hierarchy
of finite order and acceptance conditions of finite automata scanning
on w-sequences. Sixteen years after Landweber|7], Kaminski[4] re-
searched four classes based on w-languages such as (1), where A;’s
and B;’s are w-languages accepted by deterministic Biichi-automata.
Hereafter, we call A;, B; the component sets of L.

L= ('J (A — B) (1)

On the other hand, by applying the resolution theorem of ambigu-
ous sets to 23 (cf. Kuratowski [6, §37. III] ), Barua[l] constructed
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a class of w-regular sets R,, where R,11 (n > 0) is a class of w-
languages L satisfying (iv) of the following proposition.

Proposition. (Barua [1, Theorem 3.3]) Let L C ¥ be an w-language
on a finite alphabet 3. Then the followings are equivalent:

(i) L is w-regular; |

(ii) L is a finite union of differences of rational Gs sets;

(iii) L is a finite disjoint union of differences of rational Gs sets;
(iv) There exists a decreasing sequence Gy 2 Gy 2 -+ - 2 Gy, of ratio-
nal Gg sets such that

n

L:U (G,'-—Gﬂ_l).
L.even

Here we focus on the differences between (ii) and (iv) of the above-
mentioned proposition. In (ii) an w-language L takes the form given in
(1), which is discussed by Kaminski[4], and Thomas[9]. Note that the
component sets Ay, By, -+, Apm, B in the form (1) are not necessarily
linearly ordered w.r.t. the inclusion relation, whereas the component
sets Go, G1, -, Gn in (iv) of the proposition are in decreasing order.
Therefore, the following problem arises. What kinds of relations are
there between an index m in the form (1) and an index n in (iv) of
the above proposition?

In section 2 of this paper, we prepare basic definitions and nota-
tions. In section 3, as a solution to the above-mentioned problem, we
show the following theorem.

Theorem.L is in Rom if and only if L is expressed in the form (1).

In other words, we claim that the decreasing property of compo-
nent sets is dispensable.

2 Preliminary and background

Let ¥ be an alphabet containing at least two elements. We denote
the set of all words over ¥ including the empty word ¢ by T*. ©*
without € is denoted by I%. Let w be the set of all natural numbers.
A mapping from w to X is called an w-word over . By £“ we denote
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the set of all w-words over ¥. An w-word a € ¥¥ is written as
a = apayag -+ - where a; = at) (1 =0,1,2,--+). We call a subset
of ¥* (2%, resp) a language (w-language) over ¥. For A C ¥* and
B C ¥*UX¥, we define the catenation of A and B as

AB={zye2*UXY| z€ A, ye B}.
The w-power of L C ¥* is an w-language defined as
LY ={xoz129-+- €L |z; € L — {€} for all icw}.

Forz e ¥*and 2z € Z*U XY, if 2 = ay for some y € ¥* UL, z is
called an initial segment of 2z, and we denote the relation by z < =z.

Definition 2.1. For each = € ¥*, we define an open base for x as
follows:

N,={aex|z < a}.

An w-language A C ¥* is an openset of the product topology
on X¥ if A =UzepN; for some B C £*. An w-language is closed if
its complement is open. Let G (F) denote the set of all open (closed)
sets. Fy (Gg) is the set of all denumerable unions (intersections) of
closed (open) sets. Ggy (Fss) is the set of all denumerable unions

(intersections) of Gs (F) sets, respectively. The rest of the Borel
hierarchy is defined in the same manner.

Definition 2.2. If an w-language L is represented as

n
L=\|JADB
=1
for a natural number n > 1 and regular sets Ay,---, Ap, B1,--+, Bn,

then L is called an w-regular set. We denote the set of all w-regular
sets by REGY.

Definition 2.3. For a given Z-table M = (Q, L, §, o), we define the
following sets:

For g € Q and u € &7, let

R(q,u) = {6(q,v) | v < u}.
We also define

M, ={R(q,v) | 6(q,u) =q for some ue L},
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and set R(M) = Uzeq M,.

Definition 2.4. Given a Z-table M = (Q, %, 6, o) and an w-word
a € ¥, the runr of M on « is a mapping from w to Q such that

r(0) = qo,
r(n+1) =6(r(n),a(n)) forn >0.

Then we formulate a set of states occurring infinitely many times
while M runs on o € ¥, as follows:

In(o, M) = {q € Q | card(r~(g)) = Ro}.

Given a finite automaton (M, F'), we call the w-language
L((M,F)) = {a € * | In{a, M) N F # ¢}

(which is Biichi-accepted by (M, F')) a rational Gs set. A rational F,
set is a set whose complement is a rational G; set. We denote the set
of all rational Gs sets (F, sets, resp) by O3z (O4) (cf. Kobayashi et
al.[5]).

For a given T-table M = (Q,X,6,q) and a family of state sets
F C R(M), we call (M, F) a Muller automaton. Given a Muller au-

tomaton (M, F), we define the w-language Muller-accepted by (M, F)
as follows:

LM, F)) ={a e x| In(a, M) € F}.
The following is a well-known result. For the proof, see, e.g., Eilen-
berg(3].

Proposition 2.5. L is an w-regular set if and only if I = L({M, F))
for some Muller automaton (M, F).

Kaminski[4] studied the following four classes.

Deﬁnition 2.6. We define four classes RB,, B,, LB, and LRB, of
w-regular sets as follows.
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(a) L€ RB, (n > 1)
& There exist rational G sets Ay, By, -+, An—1, Bn-1, An
such that

n—1
L= J (A - Bi)UA,
i=1

) LeB, (n>1)
&4, There exist rational G5 sets Ay, By, : - -, An, Ba such that

L:ig(A,-—Bi).

(c) L€ LB, (n > 1)

& There exist rational G sets B4, As, By, - -, An, By, such

that

LZ-B—1U U(Ai—Bi),
i=2

(d) L € LRB, (n > 2)
& There exist rational G sets By, Ag, Bo, -+, Ap_1, Bn-1, An
such that

n—1
L=BU | (A — Bi) UA,.
i=2
Let G = R(M) — F for a given Muller automaton (M, F). Then

the following theorem holds, according to Kaminski[4, 2.12 Theorem,
2.11 Definition, and 3.8 Lemma].

Theorem 2.7. Forn > 0 the following hold:
(a) L((M, F)) € RBqyy

—— 1 [3F, -, Foy1 € FAG1, -+ ,Grn €G(F1 C G1 C -+ - C Fop1 C Gaya)]
(b) L((M7 F)) S Bn+1

('——),_‘[HFla"')Fn-}-ZEfaGl)"')GnrHeg(FlCGIC"'CGn+1CFn+2)]
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(c) L({M,F)) €\LBn+1

«— 2 [3F, - Fay1 € F3Gy, -+ ,Gapn €G(G1 C F1 C -+ C Gy C Fry1)]
(d) L({M, F)) € LRBy,

e [3F, -, Fay1 € FIGL,  +,Grya € G(G1 C F1 C - -+ C Fry1 C Gryo)]
where C denotes the strict inclusion.

Furthermore, the following hierarchy theorem has been obtained
by Kaminski(4].

Theorem 2.8. (Kaminski[4, 4.1 Theorem])
RB; —B; — RB; — By — RB; — By —--..

> X<

LBI—“"LRBQ——*LBQ—+LRB3’—)LB3——>LRB4__)...

(— expresses the strict inclusion.)

On the basis of the Biichi-McNaughton theorem, we can conclude
that REGY C Fy5s N Gy, Accordingly, by restricting the number of
quantifiers to 2 in the theorem of Kuratowski[6, §37. III], we obtain
the following corollary.

Corollary 2.9. A set A C ¥ is in both Fy5 and G if and only if
there exists a countable transfinite ordinal 11 such that

A= () (Cr—Cru)

Aeven
with decreasing sequence Gy 2 Gy 2 --- D G, where each Gy is a G
set in 1. Here if u is even, let Guyy = @.

Corresponding to the ordinal number x, Barua[l] defined the class
D,+1 which consists of such set A’s as mentioned in Corollary 2.9. In
particular, D; = Gs. He constructed a class R,(n > 1) of w-regular
sets taking the finite ordinal n € w as u, as follows.

Definition 2.10. For eachn > 0, L is in R, iff there is a decreasing
sequence of rational G sets Gy D G; O -++ D G, such that

L= U (Gi—Git1).

ieven
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Gy, Gy, -+, Gy are called the component sets of L. In particular,
Ry = 0;s.

Proposition 2.11. (Barua[l, Theorem 4.7])
Forn>1 TRy,=D.,NREG".

This proposition is an extension of Landweber’s theorem; O3 =
G; N REG” (cf. Landweber[7]).

3 The Kaminski hierarchy and the Barua hierar-
chy

In this section, for each m > 1 we newly define a class £,, which is
the dual class of the Barua class R,,,. We then show that the Barua
class R is identical with RB, or B, for some n > 1, according as
m is odd or even. Similar results can be obtained with £,, LB,, and
LRB, 1 instead of Rm, RBn, and B,,.

Definition 3.1. Consider a Muller automaton (M, H), where M =

(@,%,6,90) and H C R(M). For H C R(M), we define H (called the
cyclic closure of H) and ‘H as follows:

'FZ={H1UH2|H1€'HOMQ and Hy € M, for some q € Q}.

H = {H\UH, | Hy ¢ H,and H,; € HN\M, and H; € M, for someq €
Q}. , |

Note that 7 = H U H, and recall that M, is a set of nonempty
subsets of Q. Then the following holds.

Lemma 3.2. (Landweber(7])
Fcr iff L({M,F)) € Rq.

Definition 3.3. Fix a natural number n > 0. For a Muller automa-
ton (M, F), let G = R(M) — F. Then we inductively define cyclic-
closures 7; , G; (:1=0,1,---,n) as follows.
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- ~

Basis. Fo=F, Go=¢

Inductive step. For:=0,1,---,n—1, set .
Fin=FNH;, Giv1=GiNH; ,
F if ¢ is odd
where H; = .
g if 7 is even.

Concerning 7;, Barua[1] has already obtained the following result.

Proposition 8.4. ( Barua[l, Theorem 5.1] )
Forn >0, the following hold:

(a) L{({M,F)) € Rons1 if Fon N G = ¢.

(b) L(<M»-F>) e72‘2714-2 ‘ i f2n+1 N J::¢'

Since Proposition 3.4 (a) for » = 0 is the same as Lemma 3.2,
Proposition 3.4 is a generalization of the lemma. In this way, Barua[1]
obtained two points (a) and (b) for the class R,. On the other hand,
Kaminski[4] obtained four points (a), (b), (c), and (d), as seen in

Theorem 2.7. Thus we define a class £, as the dual class of Ry,
namely

Definition 3.5. For each n > 0 define a class of w-regular sets L,
as follows.

Lisin Lny1 i there exist rational Gs sets Gy, Gy, - - -, Gpsuch that
Go2Gi2--- DG, and
L =GyuU U (G; — Gi+1).

i:0dd

Lemma 3.6. |
LeLl, if TLeR,
Proof. The following equivalence holds if L is in £,,.

n—1 . n—1
L=(E"-H)U U (Hi-Hy1) off L= {J (H;— Hiy1).

i:0dd ‘ i:even
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Theorem 3.7. Forn > 0 the following hold.

(a) L((M,F)) € Roni1 iff Fon 0 G =¢.
(b) L({M,F)) € Ront2 iﬁ Fony1 N F = ¢.
() LM, F)) € Lo iff Gon N F = 9.
(d) LM, 7)) € Lo iff Gont1 N G = 4.

Proof. Points (a) and (b) are due to Barua[l] and already presented
as Proposition 3.4. We here rewrite (a) and (b), because later we
want to discuss the four points (a), (b), (c), and (d) as in Theorem
2.7.

Since points (a) and (b) hold, points (c) and (d) are proved as
follows using Lemma 3.6. .

The proof of point (c): From point (a)

FmNG=4¢ if L((M,F)) € Rany1-
By Lemma 3.6
FanNG =¢ iff L({M,G)) € Lons1.

Replacing G (F25.) by F (Gan), we obtain
GonNF =¢ iff L((M,f)) € Lont1-

The proof of point (d): From point (b) and Lemma 3.6, we obtain
point (d) by the same argument as for point (c). 5

Our main result is Theorem 3.11. In order to show Theorem 3.11,
we first state Lemma 3.8 and then prove Theorem 3.9 which implies
Corollary 3.10. By definitions we immediately obtain the following
Lemma 3.8. Forn>0

(a) Ranst € RBpy,
(b) 72'2n+2 - Bn+1,

(¢) Lany1 € LBpy,
(d) Lony2 € LRBy4o.

Theorem 3.9. Forn > 0 there hold

Q)VGeG|GeFy —
EFI,"',Fn+1€-7:HGI,”‘,Gneg (FICG1C"'CFn+1CG)],
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(b)) VE € F [F € Fopy1 —
aFy, - Fppn € F 3Gy,---,Gry1 €G
(FlCG1C"'CFn+1CGn+1CF) ],
(c)VF€eF|[F€Gy —
Fy, - Fn € F 3Gy, ,Gry1 €G
(G1CF1C * C Gny1 CF) |
() VC €G [ G € Gmps —
HFI)"'aFn+1€f BGI,"'yGn+1€g
(GiCcFRC - CGru1 CFy1 CG)].
Proof. Point (c){ (d) ] is the dual version of point (a)[ (b) ]. Since

point (a) is proved in the same manner as point (b), we show point
(b) by induction on n > 0.

’ljasz's. Fl}i, F € F arbitrarily, agg assume I' € F;. Since F; =
FoNG = (.7:0 ﬂg)U(foﬂg), FeFoNGor Fe FgNG. IfF e FoNngG,
then F' € G, ie, F ¢ F. But this is a contradiction. Therefore
F € FoNgG. Accordingly, we obtain the implication

FEfo G — 3AF e F 3G1€Q(F1CG1CF)

(The details are the same as the following inductive step.)

Inductive step. Let point (b) hold for an arbitrary n > 0. Then
fix F e F arbltranly, and assume F' € Fypy1)41. Since Fom+y1 =

Fonin NG = (Fanrn NG) U (Famsn N G), F € FomsyNG or F €
FonryNG. If F € Fynyy NG, the’ILF €3, ie., FF¢ F. But thisis a
contradiction. Therefore F' € Fyn41)NG. Accordingly, we obtain the
following implications.

F e fg(n:{; ng
— dp € Q G40 Y [F =GpoUY A Y Z Gpya A Gpyo €

(Fors2NG) M, A Y € M,

— JGr2€G (Gu2 CF AN Gryz € Fonya)
— G2 €G (Gu2 CF A Gupz € FoniNF)

— 3Gnp2 € G Ip€Q IF,, 3IX
[Gni2 CF A Gnia=FpgUX A X € Fopa A Fpyg €

E— EIFn+2€-7: aG"n+2€g ( n+2€f2n+1 A Fn+2CGn+2CF)
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—‘j—) 3Fla"'7Fn+lan+2€F BGI,"',Gn+1,Gn+2‘Eg
(M CG1C -+ CFo41 CGny1 C Frya C Gpya C F).

- (The implication 1, follows from the inductive hypothesis.) This
completes the induction. Therefore point (b) holds. '

We can infer Corollary 3.10 from Theorem 3.9, because (2) below
is logically true:

If VHeH[PH)— QH)],

then JH; € H P(H,) — 3H; € H Q(H>). (2)
Corollary 3.10. Forn > 0 there hold
(a)
f2n N g 7‘é ¢
—

3F1,°'-,Fn+1€.7: 3G1,-~-,Gn+1e(j
(F1 C Gy C -+ C Fuy1 C Gat),
(b)
f2n+lﬂf#¢

—

HFI,"')F'R-H)FH—I—ZE-F EIGI:"')GTH-lEg
(F]CG]C"'.CFn+1CGn+1 CFn+2)s

g2nnf7é¢

—

IFy, -, Fapn € F 3G, -+, Gry1 € G
(G1CF1C"-CGn+1 CFn+1)7
(d)
g2n+lng¢¢

—_

3F1,"',Fn+16f EGI)'“)Gn-{-l:Gn-l-?eg
(G] C Fl C e C Gn+1 C Fn+1 C Gn._;.‘;)).

We derive the main results by means of Theorem 2.7, Corollary
3.10, Theorem 3.7, and Lemma 3.8.
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Theorem 3.11. Forn >0

(a-) l1Bn+1 - R2n+l,

(b) Bn—l—l = R2n+2,

() LBpy1 = Long,

(d) LRB; 5 = Lonso.
Proof. We give a proof of point (b), since the proofs of points (a),
(c), and (d) are similar.

Let us consider a Muller automaton (M, F). We then derive the

following implications from Theorem 2.7, Corollary 3.10, and Theo-
rem 3.7.

L(<M7 f)) € Bn+1

3R, Fapn €F 3Gy, Grin €6
(F1 C Gy C - C Gpy1 C Fuyo)

2
Q’ ]:2n+lmf:¢

& LM, F)) € Ragna.

(1) by Theorem 2.7
(2) by Corollary 3.10
(3) by Theorem 3.7

Thus Bpy1 € Ronso. The reverse inclusion is due to Lemma 3.8. ¢

4 Conclusion

By Theorem 3.11 we conclude that the requisite decreasing condi-
tion for the component sets of w-languages in R, £, is not an essential
property for constructing these w-languages. However, the decrement
of component sets reported by Kuratowski[6] is a very convenient
property, as seen in the proof of Lemma 3.6. In other words, when
we consider the four classes RB,, B,,LB,, and LRB,,; proposed
by Kaminski[4], it is possible for the component sets to possess the
decreasing property, if occasion demands.
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